АЛТЫНОРДА
Новости Казахстана

Реферат. Поиск и разведка нефтяных и газовых месторождений

Министерство образования и науки Республики Казахстан

Центрально-Азиатский Университет

Инженерно-Технологический факультет

Кафедра Нефтегазовых и Химических технологий

 

Реферат

Тема:  Поиск и разведка нефтяных и  газовых месторождений

 

 

 

Выполнил: Пак Константин

НГД-05-03

Принял: Джексенбаев Н.К

 

 

 

 

 

 

 

 

Алматы 2006

Введение.. 3

Глава 1. Поиск и разведка нефтяных и газовых месторождений   4

1.1.      Методы поиска и разведки нефтяных и газовых месторождений. 4

Геологические методы.. 4

Геофизические  методы.. 5

Гидрогеохимические  методы.. 6

Бурение и исследования скважин. 6

1.2.      Этапы поисково-разведочных работ. 7

1.3.      Классификация залежей нефти и газа. 8

1.4.      Проблемы при поисках и разведке нефти и газа, бурении скважин.. 10

 

Введение

 

Нефть и природный газ являются одними из основных полезных ископаемых, которые использовались человеком еще в глубокой древности. Особенно быстрыми темпами добыча нефти стала расти после того, как для ее извлечения из недр земли стали применяться буровые скважины. Обычно датой рождения в стране нефтяной и газовой промышленности считается получение фонтана нефти из скважины (табл. 1).

 

 

 

 

Таблица 1

Первые промышленные притоки нефти                                                               из скважин по основным нефтедобывающим странам мира

 

 

 

 

Страна

Год

Страна

Год

Канада

1857

Алжир

1880

ФРГ

1859

Куба

1880

США

1859

Франция

1881

Италия

1860

Мексика

1882

Румыния

1861

Индонезия

1885

СССР

1864

Индия

1888

Япония

1872

Югославия

1890

Польша

1874

Перу

1896

 

Из табл. 1 следует, что нефтяная промышленность в разных странах мира существует всего 110 – 140 лет, но за этот отрезок времени добыча нефти и газа увеличилась более чем в 40 тыс.раз. В 1860 г. мировая добыча нефти составляла всего 70 тыс.т, в 1970 г. было извлечено 2280 млн.т., а в 1996 г. уже 3168 млн.т. Быстрый рост добычи связан с условиями залегания и извлечения этого полезного ископаемого. Нефть и газ проурочены к осадочным породам и распространены регионально. Причем в каждом седиментационном бассейне отмечается концентрация основных их запасов в сравнительно ограниченном количестве месторождений. Все это с учетом возрастающего потребления нефти и газа в промышленности и возможностью их быстрого и экономичного извлечения из недр делают эти полезные ископаемые объектом первоочередных поисков.

 

 

 

Глава 1. Поиск и разведка нефтяных и газовых месторождений

1.1.     Методы поиска и разведки нефтяных и газовых месторождений

 

Целью поисково-разведочных работ является выявление, оценка запасов и подготовка к разработке промышленных залежей нефти и газа.

В ходе поисково-разведочных работ применяются геологические, геофизические, гидрогеохимические методы, а также бурение скважин и их исследование.

 

Геологические методы

 

Проведение геологической съемки предшествует всем остальным видам поисковых работ. Для этого геологи выезжают в исследуемый район и осуществляют так называемые полевые работы. В ходе них они изучают пласты горных пород, выходящие на дневную поверхность, их состав и углы наклона. Для анализа коренных пород, укрытых современными наносами, роются шурфы глубиной до 3 см. А с тем,  чтобы получить представление о более глубоко залегающих породах бурят картировочные скважины глубиной до 600 м.

По возвращении домой выполняются камеральные работы, т.е. обработка материалов, собранных в ходе предыдущего этапа. Итогом камеральных работ являются геологическая карта и геологические разрезы местности (рис. 1).

 

 

Геологическая карта – это проекция выходов горных пород на дневную поверхность. Антиклиналь на геологической карте имеет вид овального пятна, в центре которого располагаются более древние породы, а на периферии – более молодые.

Однако как бы тщательно ни производилась геологическая съемка, она дает возможность судить о строении лишь верхней части горных пород. Чтобы «прощупать» глубокие недра используются геофизические методы.

 

Геофизические  методы

 

К геофизическим методам относятся сейсморазведка, электроразведка и магниторазведка.

Сейсмическая разведка (рис. 2) основана на использовании закономерностей распространения в земной коре искусственно создаваемых упругих волн. Волны создаются одним из следующих способов:

  • взрывом специальных зарядов в скважинах глубиной до 30 м;
  • вибраторами;
  • преобразователями взрывной энергии в механическую.

 

 

Скорость распространения сейсмических волн в породах различной плотности неодинакова: чем плотнее порода, тем быстрее проникают сквозь нее волны. На границе раздела двух сред с различной плотностью упругие колебания частично отражаются, возвращаясь к поверхности земли, а частично преломившись, продолжают свое движение вглубь недр до новой поверхности раздела. Отраженные сейсмические волны улавливаются сейсмоприемниками. Расшифровывая затем полученные графики колебаний земной поверхности, специалисты определяют глубину залегания пород, отразивших волны, и угол их наклона.

Электрическая разведка основана на различной электропроводности горных пород. Так, граниты, известняки, песчаники, насыщенные соленой минерализованной водой, хорошо проводят электрический ток, а глины, песчаники, насыщенные нефтью, обладают очень низкой электропроводностью.

Гравиразведка основана на зависимости силы тяжести на поверхности Земли от плотности горных пород. Породы, насыщенные нефтью или газом, имеют меньшую плотность, чем те же породы, содержащие воду. Задачей гравиразведки является определение месть с аномально низкой силой тяжести.

Магниторазведка основана на различной магнитной проницаемости горных пород. Наша планета – это огромный магнит, вокруг которого расположено магнитное поле. В зависимости от состава горных пород, наличия нефти и газа это магнитное поле искажается в различной степени. Часто магнитомеры устанавливают на самолеты, которые на определенной высоте совершают облеты исследуемой территории. Аэромагнитная съемка позволяет выявить антиклинали на глубине до 7 км, даже если их высота составляет не более 200…300 м.

Геологическими и геофизическими методами, главным образом, выявляют строение толщи осадных пород и возможные ловушки для нефти и газа. Однако наличие ловушки еще не означает присутствия нефтяной или газовой залежи. Выявить из общего числа обнаруженных структур те, которые наиболее перспективны на нефть и газ, без бурения скважин помогают гидрогеохимические методы исследования недр.

 

Гидрогеохимические  методы

 

К гидрохимическим относят газовую, люминесцетно-биту-монологическую, радиоактивную съемки и гидрохимический метод.

Газовая съемка заключается в определении присутствия углеводородных газов в пробах горных пород и грунтовый вод, отобранных с глубины от 2 до 50 м. Вокруг любой нефтяной и газовой залежи образуется ореол рассеяния углеводородных газов за счет их фильтрации и диффузии по порам и трещинам пород. С помощью газоанализаторов, имеющих чувствительность 10-5…10-6 %, фиксируется повышенное содержание углеводородных газов в пробах, отобранных непосредственно над залежью. Недостаток метода заключается в том, что аномалия может быть смещена относительно залежи (за счет наклонного залегания покрывающих пластов, например) или же быть связана с непромышленными залежами.

Применение люминесцестно-битуминологической съемки основано на том, что над залежами нефти увеличено содержание битумов в породе, с одной стороны, и на явление свечения битумов в ультрафиолетовом свете, с другой. По характеру свечения отобранной пробы породы делают вывод о наличии нефти в предполагаемой залежи.

Известно, что в любом месте нашей планеты имеется так называемый радиационный фон, обусловленный наличием в ее недрах радиоактивных трансурановых элементов, а также воздействием космического излучения. Специалистам удалось установить, что над нефтяными и газовыми залежами радиационный фон понижен. Радиоактивная съемка выполняется с целью обнаружения указанных аномалий радиационного фона. Недостатком метода является то, что радиоактивные аномалии в приповерхностных слоях могут быть обусловлены рядом других естественных причин. Поэтому данный метод пока применяется ограниченно.

Гидрохимический метод основан на изучении химического состава подземных вод и содержания в них растворенных газов, а также органических веществ, в частности, аренов. По мере приближения к залежи концентрация этих компонентов в водах возрастает, что позволяет сделать вывод о наличии в ловушках нефти или газа.

 

Бурение и исследования скважин

 

Бурение скважин применяют с целью оконтуривания залежей, а также определения глубины залегания и мощности нефтегазоносных пластов.

Еще в процессе бурения отбирают керн-цилиндрические образцы пород, залегающих на различной глубине. Анализ керна позволяет определить его нефтегазоностность. Однако по всей длине скважины керн отбирается лишь в исключительных случаях. Поэтому после завершения бурения обязательной процедурой является исследование скважины геофизическими методами.

Наиболее распространенный способ исследования скважин – электрокаротаж. В этом случае в скважину после извлечения бурильных труб опускается на тросе прибор, позволяющий определять электрические свойства пород, пройденных скважиной. Результаты измерений представляются в виде электрокаротажных диаграмм. Расшифровывая их, определяют глубины залегания проницаемых пластов с высоким электросопротивлением, что свидетельствует о наличии в них нефти.

Практика электрокаротажа показала, что он надежно фиксирует нефтеносные пласты в песчано-глинистых породах, однако в карбонатных отложениях возможности электрокатоража ограничены. Поэтому применяют и другие методы исследования скважин: измерение температуры по разрезу скважины (термометрический метод), измерение скорости звука в породах (акустический метод), измерение естественной радиоактивности пород (радиометрический метод) и др.

 

1.2.             Этапы поисково-разведочных работ

 

Поисково-разведочные работы выполняются в два этапа: поисковый и разведочный.

Поисковый этап включает три стадии:

  • региональные геологогеофизические работы:
  • подготовка площадей к глубокому поисковому бурению;
  • поиски месторождений.

На первой стадии геологическими и геофизическими методами выявляются возможные нефтегазоносные зоны, дается оценка их запасов и устанавливаются первоочередные районы для дальнейших поисковых работ. На второй стадии производится более детальное изучение нефтегазоносных зон геологическими и геофизическими методами. Преимущество при этом отдается сейсморазведке, которая позволяет изучать строение недр на большую глубину. На третьей стадии поисков производится бурение поисковых скважин с целью открытия месторождений. Первые поисковые скважины для изучения всей толщи осадочных пород бурят, как правило, на максимальную глубину. После этого поочередно разведуют каждый из «этажей» месторождений, начиная с верхнего. В результате данных работ делается предварительная оценка запасов вновь открытых месторождений и даются рекомендации по их дальнейшей разведке.

Разведочный этап осуществляется в одну стадию. Основная цель этого этапа – подготовка месторождений к разработке. В процессе разведки должны быть оконтурены залежи, коллекторские свойства продуктивных горизонтов. По завершении разведочных работ подсчитываются промышленные запасы и даются рекомендации по вводу месторождений в разработку.

В настоящее время в рамках поискового этапа широко применяются съемки из космоса.

Еще первые авиаторы заметили, что с высоты птичьего полета мелкие детали рельефа не видны, зато крупные образования, казавшиеся на земле разрозненными, оказываются элементами чего-то единого. Одними из первых этим эффектом воспользовались археологи. Оказалось, что в пустынях развалины древних городов влияют на форму песчаных гряд над ними, а в средней полосе – над развалинами иной цвет растительности.

Взяли на вооружение аэрофотосъемку и геологи. Применительно к поиску месторождений полезных ископаемых ее стали называть аэрогеологической съемкой. Новый метод поиска прекрасно зарекомендовал себя (особенно в пустынных и степных районах Средней Азии, Западного Казахстана и Предкавказья). Однако оказалось, что аэрофотоснимок, охватывающий площадь до 500…700 км2, не позволяет выявить особенно крупные геологические объекты.

Поэтому в поисковых целях стали использовать съемки из космоса. Преимуществом космоснимков является то, что на них запечатлены участки земной поверхности, в десятки и даже сотни раз превышающие площади на аэрофотоснимке. При этом устраняется маскирующее влияние почвенного и растительного покрова, скрадываются детали рельефа, а отдельные фрагменты структур земной коры объединяются в нечто целостное.

Аэрогеологические исследования предусматривают визуальные наблюдения, а также различные виды съемок – фотографическую, телевизионную, спектрометрическую, инфракрасную, радарную. При визуальных наблюдениях космонавты имеют возможность судить о строении шельфов, а также выбирать объекты для дальнейшего изучения из космоса. С помощью фотографической и телевизионной съемок можно увидеть очень крупные геологические элементы Земли – мегаструктуры или морфоструктуры.

В ходе спектрометрической съемки исследуют спектр естественного электромагнитного излучения природных объектов в различном диапазоне частот. Инфракрасная съемка позволяет установить региональные и глобальные тепловые аномалии Земли, а радарная съемка обеспечивает возможность изучения ее поверхности независимо от наличия облачного покрова.

Космические исследования не открывают месторождений полезных ископаемых. С их помощью находят геологические структуры, где возможно размещение месторождений нефти и газа. В последующем геологические экспедиции проводят в этих местах полевые исследования и дают окончательное заключение о наличии или отсутствии этих полезных ископаемых.Вместе с тем, несмотря на то, что современный геолог-поисковик достаточно хорошо «вооружен» эффективности поисковых работ на нефть и газ остается актуальной проблемой. Об этом говорит значительное количество «сухих» (не приведших к находке промышленных залежей углеводородов) скважин.

Первое в Саудовской Аравии крупное месторождение Дамам было открыто после неудачного бурения 8 поисковых скважин, заложенных на одной и той же структуре, а уникальное месторождение Хасси-Месауд (Алжир) – после 20 «сухих» скважин. Первые крупные залежи нефти в Северном море были обнаружены после бурения крупнейшими мировыми компаниями 200 скважин (либо «сухих», либо только с газопроявлениями). Крупнейшее в Северной Америке нефтяное месторождение Прадхо-Бей размерами 70 на 16 км с извлекаемыми запасами нефти порядка 2 млрд.т было обнаружено после бурения на северном склоне Аляски 46 поисковых скважин.

Есть подобные примеры и в отечественной практике. До открытия гигантского Астрахонского газоконденсатного месторождения было пробурено 16 непродуктивных поисковых скважин. Еще 14 «сухих» скважин пришлось пробурить прежде, чем нашли второе в Астрахансткой области по запасам Еленовское газоконденсатное месторождение.

В среднем, по всему миру коеффициент успешности поисков нефтяных и газовых месторождений составляет около 0,3. Таким образом, только каждый третий разбуренный объект оказывается месторождением. Но это только в среднем. Нередки и меньшие значения коэффициента успешности.

Геологи имеют дело с природой, в которой не все связи объектов и явлений достаточно изучены. Кроме того, применяемая при поисках месторождений аппаратура еще далека от совершенства, а ее показания не всегда могут быть интерпретированы однозначно.

 

1.3.     Классификация залежей нефти и газа

 

Под залежью нефти и газа мы понимаем любое естественное их скопление, приуроченное к природной ловушке. Залежи подразделяются на промышленные и непромышленные.

Под месторождением понимают одну залежь или группу залежей, полностью или частично совпадающих в плане и контролируемых структурой или ее частью.

Большое практическое и теоретическое значение имеет создание единой классификации залежей и месторождений, в числе других параметров включающей также размеры запасов. —

При классификации залежей нефти и газа учитываются такие параметры, как углеводородный состав, форма рельефа ловушки, тип ловушки, тип экрана, значения рабочих дебитов и тип коллектора.

По углеводородному составу залежи подразделяются на 10 классов: нефтяные, газовые, газоконденсатные, эмульсионные, нефтяные с газовой шапкой, нефтяные с газоконденсатной шапкой, газовые с нефтяной оторочкой, газоконденсатные с нефтяной оторочкой, эмульсионные с казовой шапкой, эмульсионные с газоконденсатной шапкой. Описанные классы относятся к категории однородных по составу залежей, в пределах которых в любой точке нефтегазосодержащего пласта физико-химические свойства углеводородов примерно одинаковы. В залежах остальных шести классов углеводороды в пластовых условиях находятся одновременно в жидком и газообразном состояниях. Эти классы залежей имеют двойное наименование. При этом на первое место ставится название комплекса углеводородных соединений, геологические запасы которых составляют более 50 % от общих запасов углеводородов в залежи.

Форма рельефа ловушки является вторым параметром, который необходимо учитывать при комплексной классификации залежей.  Практически она совпадает с поверхностью подошвы экранирующих залежь пород. Форма ловушек может быть антиклинальной, моноклинальной, синклинальной и сложной.

По типу ловушки залежи подразделяются на пять классов: биогенног выступа, массивные, пластовые, пластово-сводовые, массивно-пластовые. К пластовым залежам можно отнести только те, которые приурочены к моноклиналям, синклиналям и склонам локальных поднятий. Пластово-сводовыми называются залежи, приуроченные к положительным локальным подятиям, в пределах которых высота залежи больше мощности зона. К массивно-пластовым относятся залежи, приуроченные к локальным поднятиям, моноклиналям или синклиналям, в пределах которых высота залежи меньше мощности пласта.

Классификация залежей по типу экрана  приведена в табл. 2. В данной классификации кроме типа экрана предлагается учитывать  положение этого экрана относительно залежи углеводородов. Для этого в ловушке выделяются четыре основные зоны и их сочетания, и там, где нормальное гравитационное положение водонефтяного или газоводяного контактов нарушается зонами выклинивания и другими факторами, специальным термином определяется положение экрана относительно этих зон.

В данной классификации не учтены факторы, обусловливающие наклонное или выпукло-вогнутое положение поверхности водонефтяного или газоводяного контактов. Такие случаи объединены в графе «сложное положение экрана».

 

 

 

 

 

 

 

 

 

Таблица 2

Классификация залежей по типу экрана

Тип экрана

Положение залежей по типу экрана

по простиранию

по падению

по восстанию

со всех сторон

по простиранию и падению

по простиранию и восстанию

по падению и восстанию

сложное

Литологический

+

+

+

+

+

+

+

+

Литолого-стратиграфический

+

+

+

+

+

+

+

+

Тектонический (разрывные наруш.)

+

+

+

+

+

+

+

+

Литолого-денудационный

+

+

+

+

+

+

+

+

Соляной шток

+

+

Глинистый шток

+

+

Экранированные водой залежи

+

+

+

+

+

+

+

+

Смешанный

+

+

+

+

+

+

+

+

 

По значениям рабочих дебитов выделяется четыре класса залежей: высокодебитная, среднедебитная, малодебитная, непромышленная. В данной классификации пределы значений дебитов нефтяных и газовых залежей разнятся на одни порядок. Это обусловлено тем, что газовые залежи обычно разведываются и эксплуатируются более редкой сеткой скважин.

По типу коллектора выделяется семь классов залежей: трещинный, кавернозный, поровый, трещинно-поровый, трещинно-кавернозный, кавернозно-поровый и трещинно-кавернозно-поровый. Для некоторых газовых и газоконденсатных шапок, нефтяных залежей, газовых и газоконденсатных залежей следует учитывать наличие в порах, кавернах и трещинах неизвлекаемой нефти, которая уменьшает объем пустот залежи и должна учитываться при подсчете запасов нефти и газа.

Данная классификация является неполной, но она учитывает наиболее важные параметры, необходимые для выбора методики разведки и оптимальной технологической схемы эксплуатации.

 

 

1.4.     Проблемы при поисках и разведке нефти и газа, бурении скважин

 

С древнейших времен люди использовали нефть и газ там, где наблюдались их естественные выходы на поверхность земли. Такие выходы встречаются и сейчас. В нашей стране – на Кавказе, в Поволжье, Приуралье, на острове Сахалин. За рубежом – в Северной и Южной Америке, в Индонезии и на Ближнем Востоке.

Все поверхности проявления нефти и газа приурочены к горным районам и межгорным впадинам. Это объясняется тем, что в результате сложных горообразовательных процессов нефтегазоносные пласты, залегавшие ранее на большой глубине, оказались близко к поверхности или даже на поверхности земли. Кроме того, в горных породах возникают многочисленные разрывы и трещины, уходящие на большую глубину. По ним также выходят на поверхность нефть и природный газ.

Наиболее часто встречаются выходы природного газа – от едва заметных пузырьков до мощных фонтанов. На влажной почве и на поверхности воды небольшие газовые выходы фиксируются по появляющимся на них пузырькам. При фонтанных же выбросах, когда вместе с газом извергаются вода и горная порода, на поверхности остаются грязевые конусы высотой от нескольких до сотен метров. Представителями таких конусов на Апшеронском полуострове являются грязевые «вулканы» Тоурагай (высота 300 м) и Кянизадаг (490 м). Конусы из грязи, образовавшиеся при периодических выбросах газа, встречаются также на севере Ирана, в Мексике, Румынии, США и других странах.

Естественные выходы нефти на дневную поверхность происходят со дна различных водоемов, через трещины в породах, через пропитанные нефтью конусы (подобные грязевым) и в виде пород, пропитанных нефтью.

На реке Ухте со дна через небольшие промежутки времени наблюдается всплытие небольших капель нефти. Нефть постоянно выделяется со дна Каспийского моря недалеко от острова Жилого.

В Дагестане, Чечне, на Апшеронском и Таманском полуостровах, а также во многих других местах земного шара имеются многочисленные нефтяные источники. Такие поверхностные нефтепроявления характерны для горных регионов с сильно изрезанным рельефом, где балки и овраги врезаются в нефтеносные пласты, расположенные вблизи поверхности земли.

Иногда выходы нефти происходят через конические бугры с кратерами. Тело конуса состоим из загустевшей окисленной нефти и породы. Подобные конусы встречаются на Небит-Даге (Туркмения), в Мексике и других местах. На о. Тринидат высота нефтяных конусов достигает 20 м, а площадь «нефтяных озер» состоит из загустевшей и окисленной нефти. Поэтому даже в жаркую погоду человек не только не проваливается, но даже не оставляет следов на их поверхности.

Породы, пропитанные окисленной и затвердевшей нефтью, именуются «кирами». Они широко распространены на Кавказе, в Туркмении и Азербайджане. Встречаются они на равнинах: на Волге, например, имеются выходы известняков, пропитанных нефтью.

В течение длительного времени естественные выходы нефти и газа полностью удовлетворяли потребности человечества. Однако развитие хозяйственной деятельности человека требовало все больше источников энергии.

Стремясь увеличить количество потребляемой нефти, люди стали рыть колодцы в местах поверхностных нефтепроявлений, а затем бурить скважины.

Сначала их закладывали там, где нефть выхолила на поверхность земли. На количество таких мест ограничено. В конце прошлого века был разработан новый перспективный способ поиска. Бурение стали вести на прямой, соединяющий две скважины, уже дающие нефть.

В новых районах поиск месторождений нефти и газа велся практически вслепую, шарахаясь из стороны в сторону. Понятно, что так не могло долго продолжаться, ведь бурение каждой скважины стоит тысяч долларов. Поэтому остро встал вопрос о том, где бурить скважины, чтобы безошибочно находить нефть и газ.

Это потребовало объяснить происхождение нефти и газа, дало мощный толчок развитию геологии – науки о составе, строении и истории Земли, а также методов поиска и разведки нефтяных и газовых месторождений.

Поисковые работы на нефть и газ осуществляются последовательно от регионального этапа к поисковому и далее – разведочному. Каждый этап подразделяется на две стадии, на которых осуществляют большой комплекс работ, выполняемых специалистами разног профиля: геологами, буровиками, геофизиками, гидродинамиками и др.

Среди геологических исследований и работ большое место занимает бурение скважин, их опробование, отбор керна и его изучение, отбор проб нефти, газа и воды и их изучении и др.

Назначение буровых скважин при поисково-разведочных работах на нефть и газ различно. На региональном этапе бурят опорные и параметрические скважины.

Опорные скважины бурятся в слабоизученных территориях для изучения геологического строения и перспектив нефтегазоносности. По данным опорных скважин выявляются крупные структурные элементы и разрез земной коры, изучаются геологическая история и условия возможного нефтегазообразования и нефтегазонакопления. Опорные скважины закладываются, как правило, до фундамента или до технически возможной глубины и в благоприятных сткруктурных условиях (на сводах и других поднятиях). В опорных скважинах отбирается керн и шлам по всему разрезу отложений, проводится полный комплекс промыслово-геофизических исследований скважин (ГИС), опробование перспективных горизонтов и др.

Параметрические скважины бурятся в целях изучения геологического строения, перспектив нефтегазоносности и определения параметров физических свойств пластов для боле эффективной интерпретации геофизических исследований. Они закладываются на локальных поднятиях по профилям для регионального изучения крупных структурных элементов. Глубина скважин, как и для опорных выбирается до фундамента или, в случае невозможности его достижения (как, например, в Прикаспии), до технически возможной.

Поисковые скважины бурятся с целью открытия скоплений нефти и газа на подготовленной геологическими и геофизическими методами площади. Поисковыми считаются все скважины, пробуренные на поисковой площади до получения промышленного притока нефти или газа. Разрезы поисковых скважин детально изучаются (отбор керна, ГИС, опробование, отбор проб флюидов и др.)

Глубина поисковых скважин соответствует глубине залегания самого нижнего перспективного горизонта и в зависимости от геологического строения разных регионов и с учетом технических условий бурения колеблется от 1,5-2 до 4,5-5,5 км и более.

Разведочные скважины бурятся с целью оценки запасов открытых залежей и местоскоплений. По данным разведочных скважин определяется конфигурация залежей нефти и газа, и рассчитываются параметры продуктивных пластов и залежей, определяется положение ВНК, ГНК, ГВК. На основании разведочных скважин делается подсчет запасов нефти и газа на открытых местоскоплениях. В разведочных скважинах проводится большой комплекс исследований, включая отбор и исследование керна, отбор проб флюидов и исследование их в лабораториях, опробование пластов в процессе бурения и испытание их после окончания бурения, ГИС и др.

Бурение скважин на нефть и газ, осуществляемое на этапах региональных работ, поисков; разведки, а также разработки, является самым трудоемким и дорогостоящим процессом. Большие затраты при бурении скважин на нефть и газ обусловлены: сложностью бурения на большую глубину, огромным объемом бурового оборудования и инструментов, а  также различных материалов, которые требуются для осуществления этого процесса, включая глинистый раствор, цемент, химреагенты и др. кроме этого, затраты возрастают за счет обеспечения природоохранных мероприятий.

Основные проблемы, возникающие в современных условиях при бурении скважин, поисках и разведке нефти и газа, сводятся к следующему.

  1. Необходимость бурения во многих регионах на большую глубину, превышающую 4-4,5 км, связана с поисками УВ в неизученных низких частях разреза отложений. В связи с этим, требуется применение более сложных, но надежных конструкций скважин для обеспечения эффективности и безопасности работ. При этом, бурение на глубину свыше 4,8 км сопряжено со значительно большими затратами, чем при бурении на меньшую глубину.
  2. В последние годы возникли более сложные условия для проведения буровых работ и поисков нефти и газа. Геологоразведочные работы на современном этапе все больше продвигаются в регионы и районы, характеризующиеся сложными географическими и геологическими условиями. Прежде всего, это труднодоступные районы, неосвоенные и необустроенные, включая Западную Сибирь, европейский север, тундру, тайгу, вечную мерзлоту и др. Кроме этого, бурение и поиски нефти и газа ведутся в сложных геологических условиях, включая мощные толщи каменной соли (например, в Прикаспии), наличие в залежах сероводорода и других агрессивных компонентов, аномально высокого пластового давления и др.

Указанные факторы создают большие проблемы при бурении, поисках и разведке нефти и газа.

  1. Выход с бурением и поисками УВ в акватории северных и восточных морей, омывающих Россию, создает огромные проблемы, которые связаны как со сложной технологией бурения, поисков и разведки нефти и газа, так и с охраной окружающей среды. Выход на морские территории диктуется необходимостью прироста запасов УВ, тем более что перспективы там имеются. Однако, это значительно сложнее и дороже, чем бурение, поиски и разведка, а также разработка скоплений нефти и газа на суше.

При бурении скважин на море по сравнению с сушей при одних и тех же  глубинах бурения по зарубежным данным затраты возрастают в 9-10 раз.

Кроме того, при работе на море затраты возрастают за счет большего обеспечения безопасности работ, т.к. самые страшные последствия и аварии происходят на море, где масштабы загрязнения акваторий и побережья могут быть огромными.

  1. Бурение на большую глубину (свыше 4,5 км) и безаварийная проводка скважин во многих регионах невозможны. Это связано с отсталостью буровой базы, изношенностью оборудования и отсутствием эффективных технологий проводки скважин на большую глубину. Поэтому стоит проблема – в ближайшие годы модернизировать буровую базу и освоить технологию сверхглубокого бурения (т.е. бурения свыше 4,5 км – вплоть до 5,6 км и более).
  2. Проблемы возникают при бурении горизонтальных скважин и поведения в них геофизических исследований (ГИС). Как правило, несовершенство бурового оборудования приводит к неудачам при строительстве горизонтальных скважин.

Ошибки при бурении нередко обусловлены отсутствием точной информации о текущих координатах скважины в их связи с геологическими реперами. Такая информация нужна в особенности при приближении к продуктивному пласту.

  1. Актуальной проблемой является поиск ловушек и открытие скоплений нефти и газа неантиклинального типа. Много примеров по зарубежным объектам свидетельствует о том, что в литологических и стратиграфических, а также литолого-стратиграфических ловушках может содержаться огромное количество нефти и газа.

В нашей стране в большей степени задействованы структурные ловушки, в которых обнаружены крупные скопления нефти и газа. Практически в каждой нефтегазоносной провинции (НГП) выявлено большое количество новых региональных и локальных поднятий, составляющих потенциальный резерв для открытия местоскоплений нефти и газа. Неструктурные ловушки интересовали нефтяников в меньшей степени, чем м объясняется отсутствие крупных открытий в этих условиях, хотя незначительные по запасам объекты нефти и газа выявлены во многих НГП.

Но резервы существенного прироста запасов нефти и газа, в особенности в платформенных областях Урало-Поволжья, Прикаспия, Западной Сибири, Восточной Сибири и др. имеются. Прежде всего, резервы могут быть связаны со склонами крупных поднятий (сводов, мегавалов) и бортами прилегающих впадин и прогибов, которые широко развиты в упомянутых регионах.

Проблема заключается в том, что пока мы не располагаем надежными методами поисков ловушек неантиклинального типа.

  1. В области поисков и разведки нефти и газа существуют проблемы, связанные с повышением экономической эффективности геологоразведочных работ на нефть и газ, решение которых зависит от:
  • совершенствования геофизических методов исследований в связи с постепенным усложнением геологических и географических условий нахождения новых объектов;
  • усовершенствования методики поисков различных типов скоплений УВ, в том числе, неантиклинального генезиса;
  • повышение роли научного прогноза в целях наиболее надежного обоснования проведения поисковых работ на перспективу.

Помимо указанных выше основных проблем, стоящих перед нефтяниками в области бурения, поисков и разведки скоплений нефти и газа, в каждом конкретном регионе и районе существуют свои собственные проблемы. От решения этих проблем зависит дальнейшее наращивание разведанных запасов нефти и газа, а также экономическое развитие регионов и районов и , следовательно, благосостояние людей.

 

Заключение

Значение нефтегазовой отрасли в народном хозяйстве страны огромно. Практически все отрасли промышленности, сельское хозяйство, транспорт, медицина и просто население страны на современном уровне развития потребляют нефть, природный газ и нефтепродукты. При этом, потребление их внутри страны из года в год возрастает.

Перспективы развития нефтегазового комплекса связаны с огромными потенциальными ресурсами нефти и газа, которые залегают в недрах и еще не разведаны. К ним относятся большие площади перспективных земель, как в пределах суши, так и на акваториях, где имеются предпосылки для обнаружения значительных скоплений нефти и газа.

Это относится и к районам, где давно проводится добыча УВ, и к тем, где поисковые работы практически не проводились. Среди первых находятся Урало-Поволжье, Тимано-Печора, Западная Сибирь, Предкавказье, Прикаспий, Восточная Сибирь, Дальний Восток (Сахалин). В указанных районах сосредоточены еще значительные прогнозные ресурсы нефти и газа, которые необходимо разведать и прирастить запасы УВ в стране в ближайшем будущем.

В указанных регионах перспективы поисков новых объектов нефти и газа могут быть связаны:

  • с выявлением перспективных горизонтов на большой глубине (более 4,5 км);
  • с поисками и разведкой нефти и газа в карбонатных коллекторах;
  • с выявлением неструктурных ловушек и поисками залежей УВ на склонах сводовых поднятий и бортах впадин и др.

Кроме этого, перспективы обнаружения новых нефтегазовых объектов имеются и в неизученных частях России, где работы вообще не проводились, либо проводились в небольших объемах и не дали положительного результата.

К ним относятся, например, центральные районы европейской части России. Здесь имеются впадины земной коры (Московская и Мезенская), выполненные мощной толщей древних отложений. Перспективы нефтегазоносности этих впадин связаны с отложениями венда (протерозой), нижнего и верхнего палеозоя.

Перспективы нефтегазоностности связаны также с неизученными частями Восточной Сибири и Дальнего Востока, где возможные продуктивные горизонты могут быть в палеозойских и мезозойских отложениях. К ним относятся, например, Тургузская впадина (глубиной 4 км).

Новые открытия могут быть сделаны в арктических акваториях России, на шельфе Баренцева и Карского морей, которые являются геологическим продолжением платформенных частей суши Русской и Западно-Сибирских плит, а последние являются наиболее продуктивными частями России.

 

Список используемой литературы:

 

  1. Зыкин М.Я., Козлов В.А., Плотников А.А. Методика ускоренной разведки газовых месторождений. – М.: Недра, 1984.
  2. Мстиславская Л.П. Нефтегазовое производство (Вопросы, проблемы, решения): Учебное пособие. – М.: РГУ нефти и газа, 1999.
  3. Нестеров И.И., Потеряева В.В., Салманов Ф.К. Закономерности распределения крупных месторождений нефти и газа в земной коре. – М.: Недра, 1975.