АЛТЫНОРДА
Новости Казахстана

Реферат. Хромосомы

                Содержание

 

  1. Хромосомы
  2. Структура хромосом
  3. схемы

    4 Изучение химической организации хромосом

    5 схема

    6 Гены и хромосомы. Их строение и функционирование

    7 Структурные элементы интерфазного ядра

    8 Классификация структурных элементов интерфазного ядра

    9 Ядро

   10 Схема ультраструктурой организации интерфазного ядра

    11 Патология интерфазного ядра.

    12 Структура и размеры ядер.

13 Форма ядер и их количество

    14  Список используемой литературы

 

 

 

 

 

 

Хромосомы (греч. chrōma цвет, окраска + sōma тело) — основные структурно-функциональные элементы клеточного ядра, содержащие гены. Название «хромосомы» обусловлено их способностью интенсивно окрашиваться основными красителями во время деления клетки. Каждый биологический вид характеризуется постоянством числа, размеров и других морфологических признаков X. Хромосомный набор половых и соматических клеток различен. В соматических клетках содержится двойной (диплоидный) набор Х. который можно разделить на пары гомологичных (идентичных) хромосом, сходных по величине и морфологии. Один из гомологов всегда отцовского, другой— материнского происхождения. В половых клетках (гаметах) эукариот (многоклеточных организмов, в т.ч. человека) все хромосомы набора представлены в единственном числе (гаплоидный хромосомный набор). В оплодотворенной яйцеклетке (зиготе) гаплоидные наборы мужских и женских гамет объединяются в одном ядре, восстанавливая двойной набор хромосом. У человека диплоидный хромосомный набор (кариотип) представлен 22 парами хромосом (аутосом) и одной парой половых хромосом (гоносом). Половые хромосомы различаются не только по составу содержащихся в них генов, но и по своей морфологии. Развитие из зиготы женской особи определяет пара половых хромосом, состоящая из двух Х-хромосом, то есть ХХ-пара, а мужской — пара, состоящая из X-хромосомы и У-хромосомы, — то есть ХУ-пара.

Физико-химическая природа Х. зависит от сложности организации биологического вида. Так, у РНК-содержащих вирусов роль Х. выполняет однонитевая молекула РНК, у ДНК-содержащих вирусов и прокариот (бактерий, синезеленых водорослей) единственная Х. представляет собой свободную от структурных белков, замкнутую в кольцо молекулу ДНК, прикрепленную одним из своих участков к клеточной стенке. У эукариот главными молекулярными компонентами Х. служат ДНК (см. Нуклеиновые кислоты), основные белки гистоны, кислые белки и РНК (содержание кислых белков и РНК в хромосоме варьирует на различных этапах клеточного цикла). ДНК в хромосоме существует в виде комплекса с гистонами, хотя отдельные участки молекулы ДНК могут быть свободными от этих белков.

Комплексы ДНК с гистонами формируют элементарные структурные частицы Х. — нуклеосомы. При участии специфического гистона происходит уплотнение нуклеосомной нити, отдельные нуклеосомы тесно прилегают друг к другу, образуя фибриллу. Фибрилла подвергается дальнейшей пространственной укладке формируя нить второго порядка. Из нитей второго порядка образуются петли, которые являются структурами третьего порядка организации хромосом.

Морфология хромосом различна в отдельных фазах клеточного цикла. В пресинтетической фазе Х. представлены одной нитью (хроматидой), в постсинтетической фазе состоят из двух хроматид. В интерфазе Х. занимают весь объем ядра, образуя так называемый хроматин. Плотность хроматина в разных участках ядра неодинакова. Рыхлые участки, слабо окрашивающиеся основными красителями, сменяются более плотными участками, окрашивающимися интенсивно. Первые представляют собой эухроматин: участки плотного хроматина содержат гетерохроматин или генетически инактивированные части Х.

Индивидуально различимые тела хромосом формируются ко времени клеточного деления — митоза или мейоза (см. Клетка). В профазе первого мейотического деления Х. претерпевают сложный цикл преобразований, связанных с конъюгацией гомологичных хромосом по длине с образованием так называемых бивалентов и генетической рекомбинацией между ними. В профазе митотического деления Х. выглядят как длинные переплетенные нити. Формирование «тела» Х. в метафазе клеточного деления происходит путем уплотнения структур третьего порядка неизвестным пока способом. Наименьшую длину и характерные морфологические особенности хромосом можно наблюдать именно на стадии метафазы. Поэтому всегда описание индивидуальных особенностей отдельных хромосом, как и всего хромосомного набора, соответствует их состоянию в метафазе митоза. Обычно на этой стадии Х. представляют собой продольно расщепленные образования, состоящие из двух сестринских хроматид. Обязательным элементом структуры Х. является так называемая первичная перетяжка, где обе хроматиды сужаются и сохраняются объединенными. В зависимости от локализации центромеры различают хромосомы метацентрические (центромеры расположена посередине), субметацентрические (центромера смещена по отношению к центру) и акроцентрические (центромера расположена близко к концу хромосомы). Концы хромосомы называют теломерами.

В основе индивидуализации хромосом человека (и других организмов) лежит их способность окрашиваться на чередующиеся светлые и темные поперечные полосы по длине хромосомы при использовании специальных способов окраски. Число, положение и ширина таких полос специфичны для каждой X. Это обеспечивает надежную идентификацию всех Х. человека в нормальном хромосомном наборе и позволяет расшифровывать происхождение изменений в хромосомах при цитогенетическом обследовании пациентов с различной наследственной патологией.

Сохранение постоянства числа хромосом в хромосомном наборе и структуры каждой отдельной Х. является непременным условием нормальною развития индивидуума в онтогенезе. Однако в течение жизни в организме могут возникать геномные и хромосомные мутации. Геномные мутации являются следствием нарушения механизма деления клеток и расхождения хромосом. Полиплоидия — увеличение числа гаплоидных наборов хромосом больше диплоидного; анэуплоидия (изменение числа отдельных Х.) возможна в результате потери одной из двух гомологичных Х. (моносомия) или, наоборот, появления лишних Х. — одной, двух и более (трисомия, тетрасомия и т.д.). В соматических клетках, отличающихся интенсивным функционированием, изменение плоидности может быть физиологическим (например, физиологическая полиплоидия в клетках печени). Однако анэуплоидия в соматических клетках нередко наблюдается при развитии опухолей. Среди детей с наследственными хромосомными болезнями преобладают так называемые анэуплоиды по отдельным аутосомам и половым хромосомам. Трисомия чаще затрагивает путосомы 8, 13, 18, 21 пар и Х-хромосомы. В результате трисомии хромосом 21 пары развивается Дауна болезнь. Примером моносомии может служить Шерешевского — Тернера синдром, обусловленный утратой одной из Х-хромосом. Анэуплоидия, возникшая в первых делениях зиготы, приводит к возникновению организма с различным числом Х. данной пары в разных клетках тканей (явление мозаицизма).

Геномные и хромосомные мутации играют важную роль в эволюции биологических видов. Сравнительное изучение Х. и хромосомных наборов позволило остановить степень филогенетического родства человека и человекообразных обезьян, смоделировать набор хромосом у их общего предка и определить, какие структурные перестройки хромосом произошли в ходе эволюции человека.

 

 

 

 

Структура хромосом.

Морфологию митотических хромосом лучше всего изучать в момент их наибольшей конденсации хромосом, в метафазе и в начале анафазы. В это время хромосомы представляют собой палочковидные структуры разной длины с довольно постоянной толщиной, у большей части хромосом удается легко найти зону первичной перетяжки, которая делит хромосому на 2 плеча. Хромосомы с равными или пости равными плечами называются метацентрическими, с плечами неодинаковой длины — субметацентрическими.  Палочковидные хромосомы с очень коротким, почти незаметным вторым плечом — акроцентрические. В области первичной перетяжки расположена центромера, или кинетохор. К этой зоне во время митоза подходят микротрубочки клеточного веретена, связанные с перемещением хромосом при делении клетки. Обычно каждая хромосома имеет только одну центромеру, моноцентрические хромосомы, но могут встречаться хромосомы дицентрические, и полицентрические, т. е. обладающие множественными центромерами. В зоне первичной перетяжки (как и во всем теле хромосомы) присутствует ДНК, в электронном микроскопе видны те же элементарные фибриллы, что и в плечах хромосом. В зоне хромосомы, примыкающей к центромере, у многих видов локализована сателлитная ДНК, отличающаяся высоким уровнем повторенности нуклеотидных последовательностей. Некоторые хромосомы имеют вторичную перетяжку. Последняя обычно расположена вблизи дистального конца хромосомы и отделяет маленький участок, спутник. Вторичные перетяжки называют, кроме того, ядрышковыми организаторами, так как именно на этих участках хромосом в интерфазе происходит образование ядрышка. Здесь же локализована ДНК, ответственная за синтез рРНК. Эта ДНК относится к фракции, отличающейся умеренно повторяющимися последовательностями нуклеотидов. Плечи хромосом оканчиваются теломерами, конечными участками. У некоторых видов животных и растений в теломерах также может локализоваться ДНК с повторами нуклеотидных послёдовательностей. Теломерные концы хромосом не способны соединяться с другими хромосомами или их фрагментами, в отличие от концов хромосом, лишенных теломерных участков (в результате разрывов), которые могут присоединяться к таким же разорванным концам других хромосом. Размеры хромосом у разных организмов варьируют в широких пределах. Так, длина хромосом может колебаться от 0,2 до 50 мкм. Самые мелкие хромосомы обнаруживаются у некоторых простейших, грибов, водорослей, очень мелкие хромосомы – у льна и морского камыша; они настолько малы, что с трудом видны в световой микроскоп. Наиболее длинные хромосомы обнаружены у некоторых прямокрылых насекомых, у амфибий и у лилейных. Длина хромосом человека находится в пределах 1,5-10 мкм. Число хромосом у различных объектов также значительно колеблется, но характерно для каждого вида животных или растений. 

Термин гетерохроматин вначале был предложен для обозначения участков хромосом, интенсивно связывающихся с красителями. При переходе клетки от митоза к интерфазе определенные зоны различных хромосом или даже целые хромосомы остаются компактными и хорошо окрашиваются. Эти участки или хромосомы получали название гетерохроматические. В отличие от них те участки хромосом, которые в интерфазе деконденсируются, названы эухроматическими (эухроматин). Считается, что эухроматические районы хромосом активны и содержат весь основной комплекс генов клетки или организма. Гетерохроматические участки обычно располагаются в теломерных, центромерных, околоядрышковых районах хромосом, но могут входить и в состав их внутренних частей. Как уже указывалось, они в течение большей части хромосомного цикла остаются конденсированными и даже в интерфазе могут образовывать массивные тела. Утеря даже значительных участков гетерохроматических районов хромосом не приводит к гибели клетки. При действии некоторых химических агентов, например иприта, в гетерохроматических участках хромосом чаще наблюдаются разрывы, чем в эухроматических. Генетические и цитогенетические исследования показали, что гетерохроматические районы оказывают сильное влияние на функции соседних с ними эухроматических участков, сближенных в результате хромосомных перестроек; эухроматические участки начинают конденсироваться, падает их функциональная активность, в них происходит инактивация генов. Сейчас принято различать структурный (конститутивный) гетерохроматин и факультативный гетерохроматин. Последним термином обозначают участок хроматина, который временно переходит в конденсированное состояние. Например, в лейкоцитах, в ядерных эритроцитах и других клетках по мере структуризации ядер все большая часть хроматина переходит в конденсированное состояние, гетерохроматизируется. При этом значительно, а иногда и вовсе прекращается синтез РНК на таких участках хроматина. Но такое гетерохроматизированное состояние ядра может быть временным. При восстановлении функциональной активности ядер хроматин разрыхляется, переходит в эухроматическое состояние. Структурный гетерохроматин такими переходами не обладает или почти не обладает.  Авторадиографические исследования показывают, что зоны структурного гетерохроматина в ядрах не активны в отношении синтеза РНК, их репликация чаще происходит в конце периода синтеза основной ядерной ДНК. Оказалось, что фракции ядра, обогащенные конденсированным хроматином, гетерохроматином, содержат большую долю ДНК с повторяющимися последовательностями. Более того, гетерохроматиновые прицентромерные зоны, как говорилось выше, содержат сателлитную ДНК, т. е. ДНК с часто повторяющимися нуклеотидными последовательностями. Эта фракция ДНК, как известно, не участвует в транскрипции ни одной из форм клеточной РНК, т. е. неактивна.

 

 

В первую очередь местом  локализации структурного гетерохроматина являются околоцентромерные участки. Далее, часто гетерохроматиновые участки примыкают к зоне ядрышкового организатора, образуя околоядрышковый хроматин. Не исключено, что в ДНК ядрышка, кроме участков, с умеренно повторенными последовательностями, входят участки сателлитной ДНК, являющиеся разделителями отдельных цистронов. Теломерное расположение гетерохроматина часто наблюдается у хромосом растений. Небольшие участки гетерохроматина разбросаны среди массы эухроматических районов хромосом. Функциональное значение структурного гетерохроматина неясно. Предполагают, что он играет важную роль в поддержании общей структуры ядра, участвует в прикреплении хроматина к ядерной оболочке, может быть местом узнавания и ассоциации гомологичных хромосом при мейозе или играть роль разделительных зон между соседними генами и тем самым принимать важное участие в регуляции генной активности.

 

 

 

 

 

 

 

 

Каждая клетка тела человека содержит в точности 46 хромосом. Хромосомы всегда парны. В клетке всегда имеется по 2 хромосомы каждого вида, пары отличаются друг от друга по длине, форме и наличию утолщений или перетяжек. В большинстве случаев хромосомы достаточно разнятся, чтобы цитолог мог отличить пары хромосом (всего 23 пары). Следует отметить, что во всех соматических клетках (все клетки организма, кроме половых) хромосомы в парах всегда одинаковые по величине, форме, расположению центромер, в то время как половые хромосомы (23-я пара) у мужчин не одинаковые (ХУ), а у женщин одинаковые (ХХ).

Хромосомы в клетке под микроскопом можно увидеть только во время деления — митоза, во время стадии метафазы. Такие хромосомы называются метафазными. Когда клетка не делится хромосомы имеют вид тонких, темноокрашенных нитей, называемых хроматином.

Хроматин представляет собой дезоксирибонуклеопротеид, выявляемый под световым микроскопом в виде тонких нитей и гранул. В процессе митоза (деления клетки) хроматин путем спирализации образует хорошо видимые (особенно в метафазе) интенсивно окрашивающиеся структуры — хромосомы.

Метафазная хромосома состоит из двух продольных нитей дезоксирибонуклеопротеида — хроматид, соединенных друг с другом в области первичной перетяжки — центромеры. Центромера — особым образом организованный участок хромосомы, общий для обеих сестринских хроматид. Центромера делит тело хромосомы на два плеча. В зависимости от расположения первичной перетяжки различают следующие типы хромосом: равноплечие (метацентрические), когда центромера расположена посередине, а плечи примерно равной длины; неравноплечие (субметацентрические), когда центромера смещена от середины хромосомы, а плечи неравной длины; палочковидные (акроцентрические), когда центромера смещена к одному концу хромосомы и одно плечо очень короткое. Существуют еще точковые (телоцентрические) хромосомы, у них одно плечо отсутствует, но в кариотипе (хромосомном наборе) человека их нет. В некоторых хромосомах могут быть вторичные перетяжки, отделяющие от тела хромосомы участок, называемый спутником.

 

Изучение химической организации хромосом

 

Изучение химической организации хромосом эукариотических клеток показало, что они состоят в основном из ДНК и белков. Как было доказано многочисленными исследованиями, ДНК является материальным носителем свойств наследственности и изменчивости и заключает в себе биологическую информацию — программу развития клетки, организма, записанную с помощью особого кода. Белки составляют значительную часть вещества хромосом (около 65% массы этих структур).

Хромосома как комплекс генов представляет собой эволюционно сложившуюся структуру, свойственную всем особям данного вида. Взаимное расположение генов в составе хромосомы играет немаловажную роль в характере их функционирования.

Изменение числа хромосом в кариотипе человека может привести к различным заболеваниям. Наиболее частым хромосомным заболеванием у человека является синдром Дауна, обусловленный трисомией (к паре нормальных хромосом прибавляется еще одна такая же, лишняя) по 21-й хромосоме. Встречается этот синдром с частотой 1-2 на 1000. Нередко трисомия по 21 паре хромосом является причиной гибели плода, однако иногда люди с синдромом Дауна доживают до значительного возраста, хотя в целом продолжительность их жизни сокращена. Известны трисомии по 13-й хромосоме — Синдром Патау, а также по 18-й хромосоме — синдром Эдвардса, при которых жизнеспособность новорожденных резко снижена. Они гибнут в первые месяцы жизни из-за множественных пороков развития.

Достаточно часто у человека встречается изменение числа половых хромосом. Среди них известна моносомия Х (из пары хромосом присутствует только одна (Х0)) — это синдром Шерешевского-Тернера. Реже встречается трисомия Х и синдром Клайнфельтера (ХХУ, ХХХУ, ХУУ и т.д.). Люди с изменением числа половых хромосом при наличии У-хромосомы развиваются по мужскому типу. Это является следствием того, что факторы, определяющие мужской тип развития, находятся в У-хромосоме. В отличии от мутаций аутосом (все хромосомы, кроме половых), дефекты умственного развития у больных выражены не столь отчетливо, у многих оно в пределах нормы, а иногда даже выше среднего. Вместе с тем у них постоянно наблюдается нарушения развития половых органов и роста. Реже встречаются пороки развития других систем.

 

 

 

Гены и хромосомы. Их строение и функционирование

 

Ген представляет собой участок молекулы ДНК, определяющий наследование того или иного признака. Так как молекулы ДНК в процессе деления скручиваются в хромосомы, то ген — это участок хромосомы.
Поскольку в соматических клетках организма содержится двойной (диплоидный) набор гомологичных хромосом по одному от каждой родительской особи, следовательно, и генов, определяющих развитие каждого признака в клетке, по два. Они располагаются в строго определенных участках гомологичных хромосом — локусах. Гены, ответственные за развитие какого-то признака и лежащие в одних и тех же локусах гомологичных хромосом, называются аллельными. При образовании гамет у особей чистой линии АА все гаметы будут одинаковы, т. е. содержать ген А. Эти особи называются гомозиготными по данному признаку. Особи с генами Аа образуют два вида гамет. А и а в соотношении 1:1. Такие особи называют гетерозиготными. Преобладающий вариант признака из двух возможных называют доминантным, а подавляемый — рецессивным. Например, желтый цвет семян гороха доминирует над зеленым.
Хромосомы — это важнейший органоид ядра, содержащий ДНК в комплексе с другими белками. Хромосомы — носители наследственной информации. Число, форма и размеры хромосом — главные признаки, генетические критерии вида. Изменение числа, формы или размера хромосом — причина мутаций, которые часто вредны для организма.
Ген — матрица для синтеза и-РНК, а и-РНК — матрица для синтеза белка. Матричный характер реакций самоудвоения молекул ДНК, синтеза и-РНК, белка — основа передачи наследственной информации от гена к признаку, которая определятся молекулами белка. Многообразие белков, их специфичность, многофункциональность — основа формирования различных признаков у организма, реализации заложенных в генах наследственной информации.
Наследственная информация передается путем репликации молекулы ДНК. В основе действия гена в процессе развития организма лежит его способность посредством РНК определять синтез белков.

 

 

 

 

 

 Структурные элементы интерфазного ядра

В организме человека содержатся только эукариотические (ядерные) типы клеток. Безъядерные структуры (эритроциты, тромбоциты, роговые чешуйки) являются вторичными (постклеточными) образованиями, так как они образуются из ядерных клеток в результате их специфической дифференцировки. В подавляющем большинстве клеток содержится одно ядро, но встречаются двуядерные и даже многоядерные клетки. Форма ядра в большинстве клеток круглая (сферическая) или овальная. В некоторых клетках ядра имеют вытянутую или палочковидную форму. В зернистых лейкоцитах ядро подразделяется на сегменты (сегментоядерные лейкоциты). Локализуется ядро обычно в центре клетки, но в клетках эпителиальных тканей ядра нередко сдвинуты к базальному полюсу.



Структурные элементы ядра бывают четко выражены только в определенный период клеточного цикла в интерфазе. В период деления клетки (в период митоза или мейоза) одни структурные элементы исчезают, другие существенно преобразуются.

 

Классификация структурных элементов интерфазного ядра:

  • хроматин;
  •  
  • ядрышко;
  •  
  • кариоплазма;
  •  
  • кариолемма.

Хроматин представляет собой вещество, хорошо воспринимающее краситель (хромос), откуда и произошло его название. Хроматин состоит из хроматиновых фибрилл, толщиной 20-25 нм, которые могут располагаться в ядре рыхло или компактно. На этом основании различают два вида хроматина:

  • эухроматин — рыхлый или деконденсированный хроматин, слабо окрашивается основными красителями;
  • гетерохроматин — компактный или конденсированный хроматин, хорошо окрашивается этими же красителями.

При подготовке клетки к делению в ядре происходит спирализация хроматиновых фибрилл и превращение хроматина в хромосомы. После деления в ядрах дочерних клеток происходит деспирализация хроматиновых фибрилл и хромосомы снова преобразуются в хроматин. Следовательно, хроматин и хромосомы представляют собой различные фазы одного и того же вещества.

По химическому строению хроматин состоит из:

  • дезоксирибонуклеиновой кислоты (ДНК) 40 %;
  •  
  • белков около 60 %;
  •  
  • рибонуклеиновой кислоты (РНК) 1 %.

Ядерные белки представлены формами:

  • щелочными или гистоновыми белками 80-85 %;
  •  
  • кислыми белками 15-20 %.

Гистоновые белки связаны с ДНК и образуют полимерные цепи дезоксирибонуклеопротеида (ДНП), которые и представляют собой хроматиновые фибриллы, отчетливо видимые при электронной микроскопии. На определенных участках хроматиновых фибрилл осуществляется транскрипция с ДНК различных РНК, с помощью которых осуществляется затем синтез белковых молекул. Процессы транскрипции в ядре осуществляются только на свободных хромосомных фибриллах, то есть в эухроматине. В конденсированном хроматине эти процессы не осуществляются и потому гетерохроматин является неактивным хроматином. Соотношение эухроматина и гетерохроматина в ядре является показателем активности синтетических процессов в данной клетке. На хроматиновых фибриллах в S-периоде интерфазы осуществляется также процессы редупликации ДНК. Эти процессы происходят как в эухроматине, так и в гетерохроматине, но в гетерохроматине они протекают значительно позже.

 

Ядрышко — сферическое образование (1-5 мкм в диаметре) хорошо воспринимающее основные красители и располагающееся среди хроматина. В одном ядре может содержаться от 1 до 4-х и даже более ядрышек. В молодых и часто делящихся клетках размер ядрышек и их количество увеличены. Ядрышко не является самостоятельной структурой. Оно формируется только в интерфазе в определенных участках некоторых хромосом — ядрышковых организаторах, в которых содержатся гены, кодирующие молекулу рибосомальной РНК. В области ядрышкового анализатора осуществляется транскрипция с ДНК рибосомальной РНК. В ядрышке происходит соединение рибосомальной РНК с белком и образование субъединиц рибосом.

 

 

 

 

 

Микроскопически в ядрышке различают:

  • фибриллярный компонент — локализуется в центральной части ядрышка и представляет собой нити рибонуклеопротеида (РНП);
  • гранулярный компонент — локализуется в периферической части ядрышка и представляет скопление субъединиц рибосом.

В профазе митоза, когда происходит спирализация хроматиновых фибрилл и образование хромосом, процессы транскрипции РНК и синтеза субъединиц рибосом прекращаются и ядрышко исчезает. По окончании митоза в ядрах вновь образованных клеток происходит деконденсация хромосом и появляется ядрышко.

Кариоплазма (нуклеоплазма) или ядерный сок состоит из воды, белков и белковых комплексов (нуклеопротеидов, гликопротеидов), аминокислот, нуклеотидов, сахаров. Под световым микроскопом кариоплазма бесструктурна, но при электронной микроскопии в ней определяются гранулы (15 нм), состоящие из рибонуклеопротеидов. Белки кариоплазмы являются в основном белками-ферментами, в том числе ферментами гликолиза, осуществляющих расщепление углеводов и образование АТФ. Негистоновые (кислые) белки образуют в ядре структурную сеть (ядерный белковый матрикс), которая вместе с ядерной оболочкой принимает участие в создание внутреннего порядка, прежде всего в определенной локализации хроматина. При участии кариоплазмы осуществляется обмен веществ в ядре, взаимодействие ядра и цитоплазмы.

 

 

 

Схема ультраструктурой организации интерфазного ядра

 

1 — ядерная мембрана с порами (2), 3 — плотный хроматин;

 4 — рыхлый хроматин;

5 — ядрышко;

6 — интерхроматиновые гранулы;

 7 — перихроматиновые гранулы;

8 — перихроматиновые фибриллы;

 9 — кариоплазма

 

Кариолемма (нуклеолемма) — ядерная оболочка отделяет содержимое ядра от цитоплазмы (барьерная функция), в то же время обеспечивает регулируемый обмен веществ между ядром и цитоплазмой. Ядерная оболочка принимает участие в фиксации хроматина.

Кариолемма состоит из двух билипидных мембран — внешней и внутренней ядерной мембраны, разделенных перинуклеарным пространством, шириной от 25 до 100 нм. В кариолемме имеются поры, диаметром 80-90 нм. В области пор внешняя и внутренняя ядерные мембраны переходят друг в друга, а перинуклеарное пространство оказывается замкнутым. Просвет поры закрыт особым структурным образованием — комплексом поры, который состоит из фибриллярного и гранулярного компонента. Гранулярный компонент представлен белковыми гранулами диаметром 25 нм, располагающимися по краю поры в три ряда. От каждой гранулы отходят фибриллы и соединяются в центральной грануле, располагающейся в центре поры. Комплекс поры играет роль диафрагмы, регулирующей ее проницаемость. Размеры пор стабильны для данного типа клеток, но число пор может изменяться в процессе дифференцировки клетки. В ядрах сперматозоидов ядерные поры отсутствуют. На наружной ядерной мембране могут локализоваться прикрепленные рибосомы. Кроме того, наружная ядерная мембрана может продолжаться в канальцы эндоплазматической сети.

 

 

Патология интерфазного ядра.

В жизнедеятельности ядра следует различать две фазы — фазу размножения и фазу покоя. Каждой из них присущ особый характер функции. В фазе размножения преобладают генетические процессы («генетическое» ядро); в интервале между митозами (интерфазе) доминирует влияние ядра на цитоплазму («соматическое» ядро); соматическое ядро и генетическое ядро — это 2 стороны физиологии, а стало быть, и патологии ядра. Прескот и Бендер (1962), Сальб и Маркус (1965), Шарф и Робинс (1966), а также Джонсон и Холэнд (1966) установили на культуре клеток млекопитающих, что синтез белка прекращается в начале митоза, на стадии метафазы; они предположили, что остановка эта связана с убылью информационной РНК. Однако остановка белкового синтеза в начале митоза, как видно, не является ни универсальной, ни обязательной. Действительно, как показали Гросс и Фри (1966), в других условиях, например, во время первого дробления яйца морского ежа, интенсивность белкового синтеза не снижается.
Нельзя описывать патологию ядра в соматической и генетической фазах с чисто морфологической точки зрения. Современные биохимические и биофизические методы исследования по своим возможностям намного определили морфологические. В этих условиях патология сводится к рассмотрению физиологии под углом зрения возможных расстройств. Она описывает не столько то, что обнаруживается, сколько то, что могло бы произойти при нарушении нормальных процессов. Речь идет о предвидении будущей патологии. Выдвигается предположение о первичном повреждении какого-либо процесса и затем на основании того, что нам известно, делается попытка вывести из этого заключение о характере патологических изменений.
Патология клеточного ядра морфологически проявляется в изменении структуры, размеров, формы и количества ядер и ядрышек, в появлении разнообразных ядерных включений и изменений ядерной оболочки.

 

Структура и размеры ядер.

Структура и размеры ядра (интерфазное, митозное ядро) зависят в первую очередь от плоидности, в частности от содержания в ядре ДНК, и от функционального состояния ядра. Тетраплоидные ядра имеют диаметр больше, чем диплоидные, октоплоидные — больше, чем тетраплоидные.
Большая часть клеток содержит диплоидные ядра. В пролиферирующих клетках в период синтеза ДНК (S-фаза) содержание ДНК в ядре удваивается, в постмитотический период, напротив, снижается. Если после синтеза ДНК в диплоидной клетке не происходит нормального митоза, то появляются тетраплоидные ядра. Возникает полиплоидия — кратное увеличение числа наборов хромосом в ядрах клеток, или состояние плоидности от тетраплоидии и выше.
Полиплоидные клетки выявляют различными способами: по размеру ядра, по увеличенному количеству ДНК в интерфазном ядре или по увеличению числа хромосом в митотической клетке. Они встречаются в нормально функционирующих тканях человека. Увеличение числа полиплоидных ядер во многих органах отмечается в старости. Особенно ярко полиплоидия представлена при репаративной регенерации (печень), компенсаторной (регенерационной)гипертрофии (миокард), при опухолевом росте.
Другой вид изменений структуры и размеров ядра клетки встречается при анеуплоидии, под которой понимают изменения в виде неполного набора хромосом. Анеуплоидия связана с хромосомными мутациями. Ее проявления (гипертетраплоидные, псевдоплоидные, «приблизительно» диплоидные или триплоидные ядра) часто обнаруживаются в злокачественных опухолях.
Размеры ядер и ядерных структур независимо от плоидии определяются в значительной мере функциональным состоянием клетки. В связи с этим следует помнить, что процессы, постоянно совершающиеся в интерфазном ядре, разнонаправлены: во-первых, это репликация генетического материала в S-периоде )»полуконсервативный» синтез ДНК); во-вторых, образование РНК в процессе транскрипции, транспортировка РНК из ядра в цитоплазму через ядерные поры для осуществления специфической функции клетки и для репликации ДНК. Функциональное состояние ядра находит отражение в характере и распределении его хроматина. В наружных отделах диплоидных ядер нормальных тканей находят конденсированный (компактный) хроматин — гетерохроматин, в остальных ее отделах — неконденсированный (рыхлый) хроматин — эухроматин. Гетеро- и эухроматин отражают различные состояния активности ядра; первый из нисчитается «малоактивным» или «неактивным», второй — «достаточно активным». Поскольку ядро может переходить из состояния относительно функционального покоя в состояние высокой функциональной активности и обратно, морфологическая картина распределения хроматина, представленная гетеро- и эухроматином, не может считаться статичной.

 

Форма ядер и их количество

Изменения формы ядер — существенный диагностический признак: деформация ядер цитоплазматиескими включениями при дистрофических процессах, полиморфизм ядер при воспалении (гранулематоз) и опухолевом росте (клеточный атипизм).
Форма ядра может меняться также в связи с образованием множественных выпячиваний ядра в цитоплазму, которое обусловлено увеличением ядерной поверхности и свидетельствует о синтетической активности ядра в отношении нуклеиновых кислот и белка.
Изменения количества ядер в клетке могут быть представлены многоядерностью, появлением «спутника ядра» и безъядерностью. Многоядерность возможна при слиянии клеток. Таковы, например, гигантские многоядерные клетки инородных тел и Пирогова-Лангханса, образующиеся при слиянии эпителиоидных клеток. Но возможно образование многоядерных клеток и при нарушениях митоза — деление ядра без последующего деления цитоплазмы, что наблюдается после облучения или введения цитостатиков, а также при злокачественном росте.
«Спутниками ядра», кариомерами (маленькими ядрами), называют мелкие подобные ядру образования с соответствующей структурой и собственной оболочкой, которые расположены в цитоплазме около неизмененного ядра. Причиной их образования считают хромосомные мутации. Таковы кариомеры в клетках злокачественной опухоли при наличии большого числа фигур патологических митозов.
Безъядерность в отношении функциональной оценки клетки неоднозначна. Известны безъядерные клеточные структуры, которые являются вполне жизнеспособными (эритроциты, тромбоциты). При патологических состояниях можно наблюдать жизнеспособность частей цитоплазмы, отдельных от клетки. Но безъядерность может свидетельствовать и о гибели ядра, которая проявляется кариопикнозом, кариорексисом и кариолизисом.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

          Список используемой литературы

 

1 Кацнельсон 3. С., Клеточная теория в ее историческом развитии, Л., 1963.

2В. Азерников. Тайнопись жизни. Москва, 1973г.
3 Н. Н. Воронцов, Л. Н. Сухорукова. Эволюция органического мира. Москва,
1991г.
4 Л. Я. Кулинич. Справочник по биологии. Москва, 1986г.
5 Б. М. Медников. Аксиомы биологии. Москва, 1985г.
6 Э. Рис, М. Стернберг. От клеток к атомам. Москва, 1988г.
7 А. С. Трошин, А. Д. Браун, Ю. Б. Вахтин, Л. Н. Жинкин,

8К.М.Суханова.Цитология. Москва, 1970г.
С. Штрбанова. Кто мы? Книга о жизни, клетках и ученых. Москва, 1984г.
————————